On measurable Hamel functions

Rafał Filipów, Andrzej Nowik, Piotr Szuca

University of Gdańsk Institute of Mathematics Wita Stwosza 57 80 – 952 Gdańsk Poland

e-mail: rfilipow@delta.univ.gda.pl
e-mail: andrzej@delta.univ.gda.pl
e-mail: pszuca@radix.com.pl

Hejnice, January 30, 2010

- Basic notions and the (Pre)history
- 2 Introduction
- 3 The origin of the notion of a Hamel function
- The next results base on:
- The proof machine
- 6 Further results

A Hamel base

A Hamel base

- **1** A basis of \mathbb{R}^n as a linear space over \mathbb{Q} is called Hamel basis.
- 2 1905, Georg Hamel, used this notion to obtain the existence of a discontinuous solutions of the Cauchy equation:
- f(x+y) = f(x) + f(y)

A Hamel base

A Hamel base

- **1** A basis of \mathbb{R}^n as a linear space over \mathbb{Q} is called Hamel basis.
- 2 1905, Georg Hamel, used this notion to obtain the existence of a discontinuous solutions of the Cauchy equation:
- f(x + y) = f(x) + f(y)

A Hamel base

A Hamel base

- **1** A basis of \mathbb{R}^n as a linear space over \mathbb{Q} is called Hamel basis.
- 2 1905, Georg Hamel, used this notion to obtain the existence of a discontinuous solutions of the Cauchy equation:
- f(x + y) = f(x) + f(y)

Marczewski field and sets

- **1** $A \in (s)$ iff $\forall_{P \in Perf} \exists_{Q \in Perf} Q \subseteq A \lor Q \cap A = \emptyset$.
- $A \in (s_0)$ iff $\forall_{P \in Perf} \exists_{Q \in Perf} Q \cap A = \emptyset$

- $f: \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall y \ U$ open \implies
- $f^{-1}[U] \in (s)$
- $f: \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall_{P \in Perf} \exists_{Q \in Perf} \ f \mid Q$ continuous.

Marczewski field and sets

- 2 $A \in (s_0)$ iff $\forall_{P \in Perf} \exists_{Q \in Perf} Q \cap A = \emptyset$.

- f: R→ R is Marczewski measurable iff ∀_U U open f=1[(I] ∈ (s)
 - F: R R is Marcaeuski measurable iff Y - - -
 - $F: \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $V_{P \in Perf} \ni_{Q \in Perf} F \mid Q$ continuous

Marczewski field and sets

- **1** $f: \mathbb{R} \to \mathbb{R}$ is *Marczewski measurable* iff $\forall_U U$ open $\Longrightarrow f^{-1}[U] \in (s)$
- $f: \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall_{P \in Perf} \exists_{Q \in Perf} f \upharpoonright Q$ is continuous.

Marczewski field and sets

- **1** $f: \mathbb{R} \to \mathbb{R}$ is *Marczewski measurable* iff $\forall_U U$ open $\Longrightarrow f^{-1}[U] \in (s)$
- 2 $f: \mathbb{R} \to \mathbb{R}$ is Marczewski measurable iff $\forall_{P \in Perf} \exists_{Q \in Perf} f \upharpoonright Q$ is continuous.

A Hamel function

- Suppose that $f: \mathbb{R} \to \mathbb{R}$.
- We say that f is a Hamel function if f, considered as a subset of \mathbb{R}^2 is a Hamel basis of \mathbb{R}^2 .

Who and whene introduced this notion?

□ ト 4 回 ト 4 重 ト 4 重 ト 9 9 (4)

A Hamel function

- Suppose that $f: \mathbb{R} \to \mathbb{R}$.
- We say that f is a Hamel function if f, considered as a subset of \mathbb{R}^2 , is a Hamel basis of \mathbb{R}^2 .

Who and whene introduced this notion?

A Hamel function

- Suppose that $f: \mathbb{R} \to \mathbb{R}$.
- We say that f is a Hamel function if f, considered as a subset of \mathbb{R}^2 , is a Hamel basis of \mathbb{R}^2 .

Who and whene introduced this notion?

• The class of Hamel functions was introduced by K.Płotka in...

A Hamel function

- Suppose that $f: \mathbb{R} \to \mathbb{R}$.
- We say that f is a Hamel function if f, considered as a subset of \mathbb{R}^2 , is a Hamel basis of \mathbb{R}^2 .

Who and whene introduced this notion?

The class of Hamel functions was introduced by K.Płotka in...

The notion of a Hamel function

K.Płotka

On functions whose graph is a Hamel basis.

Proc. Amer. Math. Soc. Vol. 131, No 4, (2003), 1031 – 1041.

Hamel functions examined...

What is known about Hamel functions?

- There exists such a function!
- Theorem: (K.Płotka) Every $f: \mathbb{R} \to \mathbb{R}$ is the pointwise sum of two Hamel functions.

Hamel functions examined...

What is known about Hamel functions?

- There exists such a function!
- Theorem: (K.Płotka) Every $f: \mathbb{R} \to \mathbb{R}$ is the pointwise sum of two Hamel functions.

The base article

Rafał Filipów, Andrzej Nowik, Piotr Szuca There are measurable Hamel functions. Submitted

Main results

- There exists a Marczewski measurable Hamel function.
- There exists a Lebesgue measurable Hamel function.
- There exists a Hamel function with the Baire property.

Main results

- There exists a Marczewski measurable Hamel function.
- There exists a Lebesgue measurable Hamel function.
- There exists a Hamel function with the Baire property.

Main results

- There exists a Marczewski measurable Hamel function.
- There exists a Lebesgue measurable Hamel function.
- There exists a Hamel function with the Baire property.

- \mathcal{I} is a σ -ideal of subsets of \mathbb{R} which contains singletons.
- $\exists_{B \in \mathcal{I}}$ and a Hamel basis $H \subset B$ with $|B \setminus H| = 2^{\omega}$.
- Then there exists a Hamel function which is measurable with respect to $\mathcal{B}or\triangle\mathcal{I}$.

- \mathcal{I} is a σ -ideal of subsets of \mathbb{R} which contains singletons.
- $\exists_{B \in \mathcal{I}}$ and a Hamel basis $H \subset B$ with $|B \setminus H| = 2^{\omega}$.
- Then there exists a Hamel function which is measurable with respect to $\mathcal{B}or \triangle \mathcal{I}$.

- \mathcal{I} is a σ -ideal of subsets of \mathbb{R} which contains singletons.
- $\exists_{B \in \mathcal{I}}$ and a Hamel basis $H \subset B$ with $|B \setminus H| = 2^{\omega}$.
- Then there exists a Hamel function which is measurable with respect to $\mathcal{B}or \triangle \mathcal{I}$.

- \mathcal{I} is a Borel generated (ccc) σ -ideal of subsets of \mathbb{R} which contains singletons.
- There exists Hamel basis $H \in \mathcal{I}$.
- Then there exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or \triangle \mathcal{I}$.

- \mathcal{I} is a Borel generated (ccc) σ -ideal of subsets of \mathbb{R} which contains singletons.
- There exists Hamel basis $H \in \mathcal{I}$.
- Then there exists a Hamel function which is measurable with respect to the σ-field Bor ΔI.

- \mathcal{I} is a Borel generated (ccc) σ -ideal of subsets of \mathbb{R} which contains singletons.
- There exists Hamel basis $H \in \mathcal{I}$.
- Then there exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or \triangle \mathcal{I}$.

Definition of σ -porous sets

Theorem:

$$p(X,r) = \limsup_{\varepsilon \to 0^+} \frac{\lambda(X, (r-\varepsilon, r+\varepsilon))}{\varepsilon},$$

where $\lambda(X, I)$ denotes the maximal length of an open subinterval of the interval I which is disjoint from X.

- X is porous $(X \in \mathcal{P})$ iff $\forall_{a \in X} p(X, a) > 0$
- ullet $\sigma \mathcal{P}$ denote the sigma-ideal generated by the porous sets.

Definition of σ -porous sets

Theorem:

0

$$p(X,r) = \limsup_{\varepsilon \to 0^+} \frac{\lambda(X, (r-\varepsilon, r+\varepsilon))}{\varepsilon},$$

where $\lambda(X, I)$ denotes the maximal length of an open subinterval of the interval I which is disjoint from X.

- X is porous $(X \in \mathcal{P})$ iff $\forall_{a \in X} p(X, a) > 0$.
- ullet $\sigma \mathcal{P}$ denote the sigma-ideal generated by the porous sets.

Definition of σ -porous sets

Theorem:

0

$$p(X,r) = \limsup_{\varepsilon \to 0^+} \frac{\lambda(X, (r-\varepsilon, r+\varepsilon))}{\varepsilon},$$

where $\lambda(X, I)$ denotes the maximal length of an open subinterval of the interval I which is disjoint from X.

- X is porous $(X \in \mathcal{P})$ iff $\forall_{a \in X} p(X, a) > 0$.
- ullet $\sigma \mathcal{P}$ denote the sigma-ideal generated by the porous sets.

Further results

- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle\sigma\mathcal{P}$ (sigma porous sets).
- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle\mathcal{E}$.
- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle(\mathcal{N}\cap\mathcal{M})$

Further results

- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle\sigma\mathcal{P}$ (sigma porous sets).
- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle\mathcal{E}$.
- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle(\mathcal{N}\cap\mathcal{M})$

Further results

- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle\sigma\mathcal{P}$ (sigma porous sets).
- There exists a Hamel function which is measurable with respect to the σ -field \mathcal{B} or $\triangle \mathcal{E}$.
- There exists a Hamel function which is measurable with respect to the σ -field $\mathcal{B}or\triangle(\mathcal{N}\cap\mathcal{M})$

Thank You for Your Attention

